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1. Introduction

Weak formulations of Fracture Mechanics theories for brittle hyperelastic media have been studied in

the last years in the framework of free-discontinuity problems (see [1],[10] and [2] for a more exhaustive

list of references). In these models the state of a brittle body is described by a pair displacement-crack

with total energy given by the sum of a bulk and a surface term, related to the (approximate) gradient

and the set of (approximate) discontinuities of the deformation, respectively.

In particular, homogenization of brittle media with reinforcements may involve minimum problems for

free-discontinuity energies with an obstacle condition. In case of bodies with a periodic distribution

of perforations, intended in the sense of holes on which a Dirichlet or a unilateral obstacle condition is

imposed, one is interested in analyzing the behaviour of the energy as the diameter of the perforations

tends to 0.

In case of antiplane setting and selecting the Mumford-Shah energy as a prototype, one investigates

the asymptotics as ε tends to 0 of Dirichlet boundary value problems for functionals of the type∫
Ω

|∇u(x)|p dx+Hn−1(Su) + lower order terms u+ ≥ 0 Hn−1 a.e. on Eε (1.1)

where the open set Ω ⊆ Rn represents a section in the cylindrical reference configuration of the body

Ω×R, u ∈ GSBV (Ω) is the antiplane displacement, and the set Eε is obtained periodically perforating

the domain Ω with a rescaled copy of the reference hole E.

We remark that the formulation of the obstacle condition in (1.1) as an Hn−1 constraint is consistent

with perforations Ln negligible, and it is a natural generalization for such sets of the usual unilateral

inequality in the Ln sense (see Remark 4.2 [15]).
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The homogenization problem above was addressed in the paper [15] via Γ-convergence methods. The

convergence of the minimum problems associated to (1.1) to the corresponding problem for the Γ-

limit is a byproduct of such analysis. The coercivity of functionals as in (1.1) is ensured by a well

known result of Ambrosio (see Theorem 2.1), instead the L1 lower semicontinuity of free-discontinuity

energies subject to an Hn−1 constraint has to be investigated.

In this paper we characterize the relaxed functional associated to an energy as in (1.1) under a general

unilateral constraint. Namely, given a Borel function ψ : Ω → R ∪ {±∞}, p > 1, we consider the

functional

Fψ(u,Ω) =
∫

Ω

|∇u|pdx+Hn−1(Su) if u ∈ GSBV (Ω), u+ ≥ ψ Hn−1 a.e. on Ω,

and +∞ otherwise in L1(Ω).

In order to deal with this problem we introduce a variational measure σ following the approach of De

Giorgi for parametric Plateau problems with an obstacle (see definitions (3.1),(3.2)). The main result

proved in this paper is that the relaxed functional of Fψ can be written in the form

Fψ(u,Ω) =
∫

Ω

|∇u|pdx+Hn−1(Su)

+
1
2
σ
(
{x ∈ Su : u+(x) < ψ(x)}

)
+ σ

(
{x ∈ Ω \ Su : u+(x) < ψ(x)}

)
if u ∈ GSBV (Ω), +∞ otherwise in L1(Ω).

In particular, we show that the measure σ introduced above coincides with the analogous measure

originally defined by De Giorgi for minimal surfaces with obstacles (see Subsection 2.3 and Section 3

for more exhaustive details).

An outline of the paper is as follows. In Section 2 we review some prerequisites needed in the sequel:

We recall some properties of sets with finite perimeter, BV functions and De Giorgi’s measure σ. In

Section 3 we introduce and study the properties of a variational measure which is naturally involved

in the relaxation process. In particular, we compare it with De Giorgi’s one. In Section 4 we state and

prove the main result justifying the relaxation formula above. The result is shown to be consistent

with the addition of a Dirichlet boundary condition in Section 5. All results illustrated for the

Mumford-Shah energy are extended in Section 6 to more general free-discontinuity energies.

2. Notation and preliminaries

In the sequel n ≥ 1 will be a fixed integer, and p ∈ (1,+∞) will be a fixed exponent.

2.1. Relaxation. We recall the notion of relaxation of a functional F : X → [0,+∞] in a generic

metric space (X, d) endowed with the topology induced by d (see [9],[5]). The relaxed functional

F : X → [0,+∞] is the lower semicontinuous envelope of F , that is

F (u) = sup {G(u) : G ≤ F, G d-lower semicontinuous} .
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A different characterization holds for F , namely

F (u) = inf{lim inf
j→+∞

F (uj) : uj → u}.

Thus, given a candidate F for the lower semicontinuous envelope of F , to show that it equals F it

suffices to prove the following two inequalities

(i) (lower bound) for every (uj) converging to u in X, we have lim infj F (uj) ≥ F(u);

(ii) (upper bound) there exists (uj) converging to u in X such that lim supj F (uj) ≤ F(u).

2.2. BV functions. In this subsection we recall some basic definitions and results on sets of finite

perimeter, BV, SBV and GSBV functions. We refer to the book [2] for all the results used throughout

the whole paper, for which we will give a precise reference.

Let A ⊆ Rn be an open set, for every u ∈ L1(A) and x ∈ A, we define

u+(x) = inf
{
t ∈ R : lim

r→0+
r−nLn({y ∈ Br(x) : u(y) > t)} = 0

}
u−(x) = sup

{
t ∈ R : lim

r→0+
r−nLn({y ∈ Br(x) : u(y) < t)} = 0

}
,

with the convention inf ∅ = +∞ and sup ∅ = −∞. We remark that u+, u− are Borel functions

uniquely determined by the Ln-equivalence class of u. If u+(x) = u−(x) the common value is denoted

by ũ(x) or ap- limy→x u(y) and it is said to be the approximate limit of u in x.

In particular, for every Ln measurable set E ⊆ Rn it holds (χE)+ = χE+ , where

E+ = {x ∈ Rn : lim sup
r→0+

r−nLn(E ∩Br(x)) > 0}.

We remark that for any u ∈ L1(A) and s ≤ t, it holds

{x ∈ A : u(x) ≥ s}+ ⊇ {x ∈ A : u+(x) ≥ t}. (2.1)

The set Su = {x ∈ A : u−(x) < u+(x)} is called the set of approximate discontinuity points of u and it

is well known that Ln (Su) = 0. Let x ∈ A \Su be such that ũ(x) ∈ R, we say that u is approximately

differentiable at x if there exists L ∈ Rn such that

ap- lim
y→x

|u(y)− ũ(x)− L(y − x)|
|y − x|

= 0. (2.2)

If u is approximately differentiable at a point x, the vector L uniquely determined by (2.2), will be

denoted by ∇u(x) and will be called the approximate gradient of u at x.

A function u ∈ L1(A) is said to be of Bounded Variation in A, in short u ∈ BV (A), if its distributional

derivative Du is a Rn-valued finite Radon measure on A with mass ‖Du‖(A), called the total variation

of u on A. If u ∈ BV (A) denote by Dau, Dsu the absolutely and singular part of the Lebesgue’s

decomposition of Du w.r.t. Ln A, respectively. Then u turns out to be approximately differentiable
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a.e. on A (see Theorems 3.83 [2]), Su to be countably Hn−1-rectifiable (see Theorem 3.78 [2]), and the

values u+(x), u−(x) are finite and specified Hn−1 a.e. in A (see Remark 3.79 [2]). Moreover, it holds

Dau = ∇u Ln A, Dsu Su = (u+ − u−)νu Hn−1 Su,

where νu ∈ Rn is an orientation for Su.

We say that a Ln measurable set E ⊆ Rn is of finite perimeter in A if χE ∈ BV (A), and we call the

total variation of χE in A the perimeter of E in A, denoting it by Per(E,A) and simply by Per(E) if

A ≡ Rn. Setting for t ∈ [0, 1]

Et =
{
x ∈ Rn : lim

r→0+

Ln(E ∩Br(x))
ωnrn

= t

}
,

and ∂∗E = E \ (E1 ∪E0), it is well known that the set ∂∗E is countably Hn−1-rectifiable, and letting

ν∂∗E be an orientation for it we have DχE = DχE ∂∗E = ν∂∗EHn−1 ∂∗E (see Theorem 3.59 [2]).

We say that u ∈ BV (A) is a Special Function of Bounded Variation in A if Dsu ≡ Dju on A, in short

u ∈ SBV (A).

We say that u ∈ L1(A) is a Generalized Special Function of Bounded Variation in A, in short u ∈
GSBV (A), if for every M > 0 the truncated function (u ∧M) ∨ (−M) ∈ SBV (A).

Functions in GSBV inherit from BV ones many properties: a generalized distributional derivative

can be defined, they are approximately differentiable a.e. on A, and Su turns out to be countably

Hn−1-rectifiable (see Theorem 4.34 [2]).

The space (G)SBV has been introduced by De Giorgi and Ambrosio [13] in connection with the

weak formulation of the image segmentation model proposed by Mumford and Shah (see [18]). If

u ∈ GSBV (A) and p ∈ (1,+∞) the Mumford-Shah energy of u is defined as

MSp(u,A) =
∫
A

|∇u|p dx+Hn−1(Su). (2.3)

We recall the GSBV compactness theorem due to Ambrosio in a form needed for our purposes (see

Theorem 4.8 and Theorem 5.22 [2]).

Theorem 2.1. Let (uj) ⊂ GSBV (A) and assume that for some p ∈ (1,+∞)

sup
j

(
MSp(uj , A) + ‖uj‖L1(A)

)
< +∞.

Then, there exist a subsequence (ujk) and a function u ∈ GSBV (A) such that ujk → u a.e. in A,

∇ujk → ∇u weakly in Lp (A; Rn), Dsujk Sujk → Dsu Su weakly ∗ in the sense of measures.

In particular, if supj ‖uj‖L∞(A) < +∞ then the cluster point u belongs to SBV (A).

Eventually, if ϕ : Rn → [0,+∞) is a norm, then∫
Su

ϕ(νu)dHn−1 ≤ lim inf
k

∫
Sujk

ϕ(νujk )dHn−1.
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Eventually, in case u ∈ GSBV (A) and MSp(u,A) < +∞ the values u+(x), u−(x) are finite and

specified Hn−1 a.e. in A (see Theorem 4.40 [2]).

To conclude the preliminaries on GSBV functions we recall their characterization via restrictions to

one-dimensional subspaces. For more details on the so called “slicing techniques” we refer both to

Section 3.11 [2] and Chapter 4 [4].

Let ξ ∈ Sn−1 be a fixed direction, denote by Πξ the orthogonal space to ξ. If y ∈ Πξ and E ⊂ Rn

define Eξy = {t ∈ R : y + tξ ∈ E} and Eξ = {y ∈ Πξ : Eξy 6= ∅}. Moreover, given g : E → R define, for

any y ∈ Eξ, gξ,y : Eξy → R by gξ,y(t) := g(y + tξ).

Theorem 2.2. Let u ∈ GSBV (A), then uξ,y ∈ GSBV
(
Aξy
)

for all ξ ∈ Sn−1 and Hn−1 a.e. y ∈ Aξ.
For such y we have

(i) uξ,y(t) = ∇u (y + tξ) ξ for L1 a.e. t ∈ Aξy;

(ii) Suξ,y = (Su)ξy;

(iii) u±ξ,y(t) = u± (y + tξ) or u±ξ,y(t) = u∓ (y + tξ) according to the cases 〈νu, ξ〉 > 0, 〈νu, ξ〉 < 0

(the case 〈νu, ξ〉 = 0 being negligible).

We conclude the subsection recalling a consequence of the Coarea formula (see Theorem 2.93 [2]).

Proposition 2.3. For any u ∈ GSBV (A), for every ξ ∈ Sn−1 and every open set A′ ⊆ A it holds∫
A′∩Su

|〈νu(x), ξ〉|dHn−1(x) =
∫
A′ξ

H0((Su)ξy)dHn−1(y). (2.4)

2.3. De Giorgi’s measure. In this subsection we recall the definition of an (n−1)-dimensional geo-

metric measure which has been introduced in the study of obstacle problems for area-like functionals

(see [14],[12],[8],[19],[6],[7]).

Following the original definition by De Giorgi [14], for any open set A ⊆ Rn and any set E ⊆ Rn, we

consider the set functions

σε(E,A) = inf
{

Per(D,A) +
1
ε
Ln(D ∩A) : D = D+, D ⊇ E ∩A

}
,

and

σ(E,A) = sup
ε>0

σε(E,A).

We collect below some properties of σ summarizing Theorems 2.3, 2.7, 2.8 and 4.10 of Chapter 4 [14].

Theorem 2.4. Let A ⊆ Rn be an open set and E ⊆ Rn.

(a) σ is a regular Borel measure such that

c1(n)Hn−1(E ∩A) ≤ σ(E,A) ≤ c2(n)Hn−1(E ∩A) (2.5)

for two positive constants c1, c2 depending only on n.
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(b) If E ⊆ A, then

σ(E,A) = σ(E). (2.6)

In particular, for every set F ⊆ Rn it holds σ(F,A) = σ(F ∩A).

(c) If E is a Hn−1-rectifiable set, then

σ(E,A) = 2Hn−1(E ∩A). (2.7)

Remark 2.5. The papers [16],[17] study in details the relationship between σ and Hn−1. In particular,

an example disproves the equality in (2.7) in general.

Moreover, the inequality c2(n) ≤ nωn/ωn−1 is established, with ωk the Lk measure of the unit ball in

Rk. A further example shows the optimality of that bound for n = 2, and some hints are given in

order to generalize such a result for arbitrary n ≥ 2. No lower bound for c1(n) is to our knowledge

explicit.

We now state alternative characterizations of σ, the first proved in [8] the others in [6].

Proposition 2.6. For any open set A ⊆ Rn and any set E ⊆ Rn, we have

σ(E,A) = sup
ε>0

(
inf
{

Per(D,A) +
1
ε
Ln(D ∩A) : D open, D ⊇ E ∩A

})
= sup

ε>0

(
inf
{

Per(D,A) +
1
ε
Ln(D ∩A) : D Ln measurable, Hn−1(E ∩A \D+) = 0

})
= sup

ε>0

(
inf
{
‖Du‖(A) +

1
ε

∫
A

|u| dx : u ∈ BV (A), u+ ≥ 1 Hn−1 a.e. on E ∩A
})

.

Remark 2.7. The first characterization of σ provided in Proposition 2.6 entails that for any set E

for which σ(E,A) < +∞ we can find a family of open sets (Dε) admissible for the minimum problems

σε(E,A) satisfying Ln(Dε) = o(ε2) and

σ(E,A) = Per(Dε, A) + o(1).

The following result clarifies how De Giorgi’s measure σ arises in the relaxation of obstacle problems

with linear growth (see Theorem 3.4 Chapter 4 [14], Theorem 6.1 [6] and Theorem 7.1 [6] when a

Dirichlet boundary datum is added). To avoid technicalities we state it in the simplest case.

Theorem 2.8. Given an open set A ⊆ Rn and a Borel function ψ : Rn → R ∪ {±∞}, consider

Gψ(u,A) =
∫
A

|∇u|dx, if u ∈W 1,1(A), ũ ≥ ψ Hn−1 a.e. on A, (2.8)

and +∞ otherwise in L1(A). Then, the lower semicontinuos envelope of Gψ in the L1 topology is

given by

Gψ(u,A) = ‖Du‖(A) +
∫
A

[(ψ − u+) ∨ 0]dσ

if u ∈ BV (A), +∞ otherwise in L1(A).
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3. A variational measure

In this section we introduce a regular Borel measure on any open set A ⊆ Rn following one of the

characterizations of the measure σ provided in Proposition 2.6.

According to the definition given by [6], for any ε > 0 and for any set E ⊆ Rn we consider the set

functions σεMS(E,A) defined by

inf
{
MSp(u,A) +

1
ε

∫
A

|u|p dx : u ∈ SBV (A), u+ ≥ 1Hn−1 a.e. onE ∩A
}

(3.1)

and

σMS(E,A) = sup
ε>0

σεMS(E,A), (3.2)

with the convention of dropping the dependence on A when A = Rn.

Remark 3.1. Similarly to Remark 2.7 the very definition of σMS entails that for any set E for which

σMS(E,A) < +∞ we can find a family of functions (vε) ⊆ SBV (A) admissible for the minimum

problems σεMS(E,A) satisfying ‖vε‖pLp(A) = o(ε2) and

σMS(E,A) = MSp(vε, A) + o(1).

It turns out that the set function σMS introduced above coincides with the measure σ. To explain this

fact we notice that the penalization of the Lp norm forces minimizing functions for σεMS(E,A) to make

a transition from 1 to 0 in a thinner and thinner set enclosing E. Therefore the superlinearity in the

bulk term makes energetically more convenient for minimizing functions to have a discontinuity in a

neighbourhood of E rather than having a high gradient energy. Finally, note that the Mumford-Shah

and the total variation functionals coincide on sets of finite perimeter.

Proposition 3.2. For any open set A ⊆ Rn, for any set E ⊆ Rn, we have

σMS(E,A) = σ(E,A).

Proof. Let A be a fixed open set throughout all the proof. Given any set E, taking into account

that for any measurable set D ⊆ Rn with finite perimeter which is admissible for σ(E,A), the

function u = χD ∈ SBV (A) is admissible for σMS(E,A) and MSp(u,A) = Per(D,A), we have

σMS(E,A) ≤ σ(E,A).

In order to get the opposite inequality it suffices to consider a set E such that σMS(E,A) < +∞.

Fixed a family of functions (vε) as in Remark 3.1, the strategy to prove the inequality σMS ≥ σ

relies on finding suitable superlevel sets of vε such that their perimeters are bounded above by the

Mumford-Shah energies of vε, their Ln measures are negligible with respect to ε, and the set E ∩ A
is contained Hn−1 a.e. in such superlevel sets.
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Let η > 0, then by Remark 3.1 we can find vε ∈ SBV (A) such that v+
ε (x) ≥ 1 Hn−1 a.e. on E ∩ A

and

MSp(vε, A) +
1
ε2

∫
A

|vε|p dx ≤ σMS(E,A) + η. (3.3)

Up to passing to 0 ∨ vε ∧ 1 we may also assume that 0 ≤ vε ≤ 1. By the BV Coarea formula (see

Theorem 3.40 [2]) we may choose zε ∈ (ε
1
2p , 1) such that

(1− ε
1
2p )Per({x ∈ A : vε(x) > zε}, A)

≤
∫ 1

ε
1
2p

Per({x ∈ A : vε(x) > t}, A) dt ≤ ‖Dvε‖({x ∈ A : vε(x) > ε
1
2p }). (3.4)

Letting Dε := {x ∈ A : vε(x) > zε} and Aε := {x ∈ A : vε(x) > ε
1
2p }, Hölder inequality, the fact that

|v+
ε (x)− v−ε (x)| ≤ 1 Hn−1 a.e., and (3.4) imply

(1− ε
1
2p )Per(Dε, A) ≤

∫
Aε

|∇vε| dx+Hn−1(Svε) ≤ Ln(Aε)
p−1
p ‖∇vε‖Lp(A) +Hn−1(Svε). (3.5)

Moreover, by (3.3)

Ln(Aε)ε
1
2 ≤

∫
A

|vε|p dx ≤ (σMS(E,A) + η)ε2,

from which we infer Ln(Aε) = o(ε) and Ln(Dε) = o(ε), and thus Dε has finite perimeter in A.

In particular, using (3.3), for ε small enough (3.5) rewrites as

Per(Dε, A) ≤ σMS(E,A) + 2η. (3.6)

Furthermore, D+
ε ⊇ {x ∈ A : v+

ε (x) ≥ 1} by (2.1), and thus Hn−1((E ∩ A) \D+
ε ) = 0. Hence, Dε is

admissible for σε(E,A) and, taking (3.6) into account, for ε small enough it holds

σε(E,A) ≤ Per(Dε, A) +
Ln(Dε)

ε
≤ σMS(E,A) + 3η.

Taking first the supremum on ε and then letting η → 0+ we get the desired inequality.

Remark 3.3. Following [8] and [6] one could equivalently define σMS(E,A) as the supremum of the

set functions

inf
{
MSp(u,A) +

1
ε

∫
A

|u|p dx : u ∈ SBV (A), u ≥ 1Ln a.e. on an open set U ⊇ E ∩A
}
. (3.7)

Actually, by using the previous proposition and exploiting the equivalence between the two definitions

already proven for the measure σ one gets that the final measure is the same (see Proposition 2.6).

Remark 3.4. The proof of Proposition 3.2 shows that the measure σ coincides also with the one

obtained by substituting in definitions (3.1), (3.2) the Mumford-Shah energy with any of the form∫
A

f(∇u)dx+Hn−1(Su ∩A),

where f : Rn → R is such that

c1|ξ|p ≤ f(ξ) ≤ c2|ξ|p

for every ξ ∈ Rn, for some constants c1, c2 > 0 (see also Section 6).
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We now introduce a Borel measure accounting for a generic obstacle. Let ψ : Rn → R∪ {±∞}, A an

open set in Rn, and E ⊆ Rn, for any ε > 0 define σεMS(E,A, ψ) as

inf
{
MSp(u,A) +

1
ε

∫
A

|u|p dx : u ∈ SBV (A), u+ ≥ ψ Hn−1 a.e. on E ∩A
}
, (3.8)

and as usual set σMS(E,A, ψ) = supε>0 σ
ε
MS(E,A, ψ). With a slight abuse of notation when ψ(x) ≡ c

we denote σMS(·, A, ψ) simply by σMS(·, A, c). With this notation then σMS(·, A, 1) = σMS(·, A).

Assuming ψ to be a Borel function, one can push forward the arguments used in Proposition 3.2 and

prove the following description of σMS(·, A, ψ) on Borel sets.

Proposition 3.5. For any open set A, for any Borel function ψ, and any Borel set E ⊆ Rn we have

σMS(E,A, ψ) = σMS({x ∈ E : ψ(x) > 0}, A).

Proof. The open set A and the Borel function ψ will be fixed throughout the whole proof.

Given a Borel set E we first prove that σMS(E,A, ψ) ≥ σMS({x ∈ E : ψ(x) > 0}, A). Thus, it is not

restrictive to assume σMS(E,A, ψ) < +∞. With λ ∈ (0, 1) fixed, we claim that

σMS(E,A, ψ) ≥ σMS({x ∈ E : ψ(x) > λ}, A). (3.9)

It is clear that the required inequality will easily follow letting λ → 0+ and using the fact already

proved that σMS(·, A) is a regular Borel measure.

In order to get (3.9) we will exploit the same construction and arguments introduced in the proof of

Proposition 3.2 complemented with the Borel regularity assumptions.

Let η > 0 be fixed, reasoning as in Remark 3.1 one can consider functions wε ∈ SBV (A) such that

w+
ε (x) ≥ ψ(x) Hn−1 a.e. on E ∩A and

MSp(wε, A) +
1
ε2

∫
A

|wε|p dx ≤ σMS(E,A, ψ) + η. (3.10)

Arguing as in the proof of Proposition 3.2 with respect to the functions vε := 0∨ (wε/λ)∧ 1, one can

find superlevel sets Dε = {x ∈ A : wε(x) > z′ε} with z′ε ∈ (λε
1
2p , λ) such that

Per(Dε, A) +
1
ε
Ln(Dε) ≤ σMS(E,A, ψ) + 3η. (3.11)

Indeed, taking into account (3.10) and the fact that

1
ε2

∫
A

|vε|p dx ≤
1

λpε2

∫
A

|wε|p dx

if we set Dε = {x ∈ A : vε(x) > zε} with any zε ∈ (ε
1
2p , 1), we get Ln(Dε) = o(ε). We now choose

zε ∈ (ε
1
2p , 1) such that (3.5) holds true for vε defined as above. Since Ln(Dε) = o(ε), ‖∇vε‖Lp(A) ≤

λ−1‖∇wε‖Lp(A) and Hn−1(Svε) ≤ Hn−1(Swε), it is enough to take z′ε := λzε to obtain superlevel sets

of the initial functions wε with the property (3.11).

Moreover, since for Hn−1 a.e. x ∈ A ∩ {x ∈ E : ψ(x) > λ} it holds w+
ε (x) ≥ ψ(x) > λ, by definition

v+
ε (x) = 1. Hence, taking (2.1) into account, D+

ε ⊇ {x ∈ A : v+
ε (x) ≥ 1} ⊇ A ∩ {x ∈ E : ψ(x) > λ}
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and thus the functions uε = χDε are admissible for σε({x ∈ E : ψ(x) > λ}, A). Letting eventually

η → 0+ in (3.11), we get (3.9).

Notice that the same argument implies that for any positive constant c we have

σMS(E,A, c) = σMS(E,A). (3.12)

In order to prove the inverse inequality let us consider a Borel set E such that σMS({x ∈ E : ψ(x) >

0}, A) < +∞. This condition implies at once that the set A∩{x ∈ E : ψ(x) = +∞} is Hn−1 negligible

(see (2.5)). Setting Ei = {x ∈ E : i + 1 ≥ ψ(x) > i} for i ∈ N, by the standard additivity property

of the Borel measure σMS(·, A) we have

σMS({x ∈ E : ψ(x) > 0}, A) =
+∞∑
i=0

σMS(Ei, A).

For η > 0 fixed, let viε be almost optimal for σMS(Ei, A, i+ 1), that is (viε)
+(x) ≥ i+ 1 Hn−1 a.e. on

Ei and

MSp(viε, A) +
1
ε

∫
A

|viε|p dx ≤ σMS(Ei, A) +
η

2i
, (3.13)

recalling that σMS(Ei, A, i+ 1) = σMS(Ei, A) by (3.12).

Set ukε := sup0≤i≤k v
i
ε. Then ukε ∈ SBV (A) and

MSp(ukε , A) +
1
ε

∫
A

|ukε |p dx ≤
k∑
i=0

(MSp(viε, A) +
1
ε

∫
A

|viε|p dx) ≤
k∑
i=0

σMS(Ei, A) + 2η. (3.14)

In particular, (ukε) is a non-decreasing sequence satisfying the hypotheses of the GSBV compactness

theorem 2.1, so that there exists a function uε ∈ SBV (A) such that ukε → uε in L1(A). Thus, from

(3.14) it follows

MSp(uε, A) +
1
ε

∫
A

|uε|p dx ≤

lim inf
k→+∞

(
MSp(ukε , A) +

1
ε

∫
A

|ukε |p dx
)
≤ σMS({x ∈ E : ψ(x) > 0}, A) + 2η.

Moreover, since A ∩ {x ∈ E : ψ(x) > 0} = ∪i≥0(A ∩ Ei), for Hn−1 a.e. z ∈ A ∩ {x ∈ E : ψ(x) > 0}
there exists i ∈ N such that z ∈ A ∩Ei, and then u+

ε (z) ≥ (ui+1
ε )+(z) ≥ i+ 1 ≥ ψ(z). Eventually, uε

is admissible as a test function for σεMS(E,A, ψ) and the inequality follows as usual.

4. Relaxation result

Given an open bounded set Ω and a Borel function ψ : Ω→ R ∪ {±∞}, we study the lower semicon-

tinuous envelope of the functional Fψ : L1(Ω)→ [0,+∞] defined by

Fψ(u,Ω) =
∫

Ω

|∇u|pdx+Hn−1(Su) if u ∈ GSBV (Ω), u+ ≥ ψ Hn−1 a.e. on Ω, (4.1)

and +∞ otherwise in L1(Ω).

Building on what has been shown in Section 3 we are able to prove the main result of the paper.
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Theorem 4.1. Let Fψ be as in (4.1), then its lower semicontinuous envelope in the L1 topology is

given by

Fψ(u,Ω) =
∫

Ω

|∇u|pdx+Hn−1(Su)

+
1
2
σ
(
{x ∈ Su : u+(x) < ψ(x)}

)
+ σ

(
{x ∈ Ω \ Su : u+(x) < ψ(x)}

)
(4.2)

if u ∈ GSBV (Ω), +∞ otherwise in L1(Ω).

In the sequel it is not restrictive to presume the existence of w ∈ GSBV (Ω) such that Fψ(w,Ω) < +∞,

being otherwise Fψ ≡ Fψ ≡ +∞.

For such w’s we have {x ∈ Ω : ψ(x) = +∞} ⊆ {x ∈ Ω : w+(x) = +∞}, which implies

Hn−1({x ∈ Ω : ψ(x) = +∞}) = 0 (4.3)

(see Theorem 4.40 [2]).

To prove Theorem 4.1 we address separately the lower and upper bound inequalities.

Proposition 4.2. For every u and (uj) in L1(Ω) such that uj → u in L1(Ω) we have

lim inf
j

Fψ(uj ,Ω) ≥ Fψ(u,Ω).

Proof. First notice that we may assume lim infj Fψ(uj ,Ω) to be finite being the result trivial otherwise;

then by Ambrosio’s theorem 2.1 we have u ∈ GSBV (Ω). Moreover, we may assume the inferior limit

above to be a limit up to extracting a subsequence which we do not relabel for convenience.

We claim the following three estimates to hold true for every open set A ⊆ Ω

lim inf
j

Fψ(uj , A) ≥MSp(u,A), (4.4)

lim inf
j

Fψ(uj , A) ≥ σ(A ∩ {x ∈ Su : u+(x) < ψ(x)}), (4.5)

lim inf
j

Fψ(uj , A) ≥ σ
(
A ∩ {x ∈ Ω \ Su : u+(x) < ψ(x)}

)
. (4.6)

Given them for granted the result follows by standard measure theoretic arguments (see Proposition

1.16 [4]). Indeed, set Σu = {x ∈ Ω : u+(x) < ψ(x)}, then from (4.4), (4.5) and (4.6) and taking into

account (2.7), for any λ, µ ∈ [0, 1], λ+ µ ≤ 1 it follows

lim inf
j

Fψ(uj , A) ≥ λ
∫
A

|∇u|pdx+ λHn−1(A ∩ (Su \ Σu))

+(λ+ 2µ)Hn−1(A ∩ Su ∩ Σu) + (1− λ− µ)σ(A ∩ (Σu \ Su)).

Being the left hand side above a superadditive set function on disjoint open sets of Ω and the right

hand side sum of orthogonal Radon measures, we can pass to the supremum on λ, µ separately on

each term and infer

lim inf
j

Fψ(uj ,Ω) ≥
∫

Ω

|∇u|pdx+Hn−1(Su \ Σu) + 2Hn−1(Su ∩ Σu) + σ(Σu \ Su)
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=
∫

Ω

|∇u|pdx+Hn−1(Su) +
1
2
σ(Su ∩ Σu) + σ(Σu \ Su),

which gives the thesis.

Since (4.4) follows immediately by Ambrosio’s theorem 2.1, to conclude the proof we are left with

showing the validity of (4.5) and (4.6).

Step 1: Proof of (4.5). We begin with proving the inequality in the one-dimensional case which reads

as follows

lim inf
j

∫
Ω

|u̇j |pdt+H0(Suj ) ≥ 2H0(Su ∩ Σu).

We notice that the approximating functions are forced to make a transition from the trace values

u±(t̄) to the obstacle constraint ψ(t̄) in any neighbourhood I of a discontinuity point t̄ of u where the

constraint is violated, that is u+(t̄) < ψ(t̄). Hence, to prove the estimate above we will quantify the

cost of this transition, and show that it is energetically convenient for the approximating functions to

have asymptotically at least 2 discontinuity points in I.

Recall that we have assumed

lim inf
j

∫
Ω

|u̇j |pdt+H0(Suj ) = lim
j

∫
Ω

|u̇j |pdt+H0(Suj ) ≤M < +∞, (4.7)

which gives uj ∈ SBV (Ω) for every j ∈ N; moreover, for a subsequence not relabeled for convenience,

we suppose uj → u L1 a.e. in Ω.

We claim that for j sufficiently big

H0
(
A ∩ Suj

)
≥ 2H0 (A ∩ Su ∩ Σu) . (4.8)

With fixed t̄ in the finite set Su ∩ Σu, there exists δ > 0 such that Iδ = (t̄ − δ, t̄ + δ) ⊂⊂ A and

Iδ ∩Su = {t̄}. Furthermore, being u a Sobolev function on (t̄−δ, t̄) and (t̄, t̄+δ) separately, we choose

δ > 0 sufficiently small such that

u(t) ≤ u+(t̄) + ε

for every t ∈ Iδ, with ε ∈ (0, (ψ(t̄)− u+(t̄))/4).

It is clear that (4.8) follows provided we show

lim inf
j
H0
(
Iδ ∩ Suj

)
≥ 2. (4.9)

Arguing by contradiction we first observe that, up to a subsequence, Iδ ∩ Suj = {tj} since by lower

semicontinuity lim infj H0
(
Iδ ∩ Suj

)
≥ 1 (see Theorem 2.1). In the sequel we show that this implies

lim inf
j

∫
Iδ

|u̇j |pdt ≥ δ1−p
(
ψ(t̄)− u+(t̄)

4

)p
. (4.10)

Select two points s1 ∈ (t̄−δ, t̄)\∪j{tj} and s2 ∈ (t̄, t̄+δ)\∪j{tj} such that uj(si)→ u(si) for i = 1, 2,

then for j sufficiently big and i = 1, 2

uj(si) ≤ u(si) + ε ≤ u+(t̄) + 2ε.


